Variance Estimates for Total Estimates

Let

 \hat{Y}_L^t = The estimated total for data item Y at tabulation level L, industry by tax status, for time period t computed from the entire sample

 $\hat{Y}_{L,g}^t$ = The estimated *replicate total* for data item Y at tabulation level L for time period t computed from the gth random group of noncertainty sampling units ($W_i^t = 1$), where g=01, 02, ... 16, and the certainty sampling units ($W_i^t = 1$)

 $\hat{Y}_{L,00}^t$ = The weighted total for data item Y at tabulation level L for time period t computed from the certainty sampling units (where random group=00 and W_i^t = 1); this term can be zero

G = 16

 $i \in (L,g)$ denotes units assigned to random group g that possess characteristics of tabulation level L

Then, the gth replicate total for data item Y at tabulation level L for time period t is computed as

$$\hat{Y}_{L,g}^t = G\left(\sum_{i \in (L,g)} w_i^t y_i^t\right) + \hat{Y}_{L,00}^t$$

The sum in parentheses of the preceding formula is referred to as the random group total.

Then the estimated variance of \hat{Y}_L^T is computed as

$$v(\hat{Y}_{L}^{t}) = \frac{1}{G(G-1)} \sum_{g=1}^{G} (\hat{Y}_{L,g}^{t} - \hat{Y}_{L}^{t})^{2}$$

Variance Estimates for Ratio Estimates

Let

 \hat{R}_L^t = the estimated ratio of interest at tabulation level L for time t computed from the entire sample

 $\hat{R}_{L,g}^t = \begin{array}{l} \text{the estimated replicate ratio of interest at tabulation level L for time} \\ \text{period t computed from the g}^{\text{th}} \text{ random group of noncertainty sampling} \\ \text{units } (w_i^t = 1), \text{ where g=01, 02, ... 16, and the certainty sampling} \\ \text{units } (w_i^t = 1) \end{array}$

$$= \frac{\hat{Y}_{L,g}^t}{\hat{X}_{L,g}^t}$$

where L, g, $\hat{X}_{L,g}^t$, and $\hat{Y}_{L,g}^t$ are defined as in the **variance estimates** for total estimates above.

Then the estimated variance of \hat{R}_L^t is computed as

$$v(\hat{R}_{L}^{t}) = \frac{1}{G(G-1)} \sum_{q=1}^{G} (\hat{R}_{L,g}^{t} - \hat{R}_{L}^{t})^{2}$$

Variance Estimates for Period-to-Period Percent Change Estimates

Let the year-to-year percent change estimate, \hat{T}_L^t , be defined as

$$\hat{T}_{L}^{t} = \left(\frac{\hat{Y}_{L}^{t_{1}} - \hat{Y}_{L}^{t_{2}}}{\hat{Y}_{L}^{t_{2}}}\right) * 100$$

$$= \left(\hat{R}_{L}^{t} - 1\right) * 100$$

Then the estimated variance of this estimate is computed as

$$v(\hat{T}_{L}^{t}) = v[(\hat{R}_{L}^{t} - 1) * 100]$$

$$= (100)^{2} v(\hat{R}_{L}^{t})$$

$$= \frac{(100)^{2}}{G(G - 1)} \sum_{g=1}^{G} (\hat{R}_{L,g}^{t} - \hat{R}_{L}^{t})^{2}$$

Variance Estimates for Percent Contribution of Component NAICS to Aggregate NAICS Estimates (E-Stats Report)

Let the percent contribution of a component NAICS to aggregate NAICS estimate, $\hat{\pmb{P}}_{\!L_1\!/L_2}^t$ be defined as

$$\hat{P}_{L_1/L_2}^t = \frac{\hat{Y}_{L_1}^t}{\hat{Y}_{L_2}^t} \\ = \hat{R}_{L_1/L_2}^t$$

where $L_{\!\scriptscriptstyle 1}$ and $L_{\!\scriptscriptstyle 2}$ denote the component and aggregate NAICS codes, respectively.

Then the estimated variance of this estimate is computed as

$$v(\hat{P}_{L_{1}/L_{2}}^{t}) = v(\hat{R}_{L_{1}/L_{2}}^{t} * 100)$$

$$= (100)^{2} v(\hat{R}_{L_{1}/L_{2}}^{t})$$

$$= \frac{(100)^{2}}{G(G-1)} \sum_{g=1}^{G} (\hat{R}_{L_{1}/L_{2},g}^{t} - \hat{R}_{L_{1}/L}^{t})^{2}$$